9 research outputs found

    Design implications for task-specific search utilities for retrieval and re-engineering of code

    Get PDF
    The importance of information retrieval systems is unquestionable in the modern society and both individuals as well as enterprises recognise the benefits of being able to find information effectively. Current code-focused information retrieval systems such as Google Code Search, Codeplex or Koders produce results based on specific keywords. However, these systems do not take into account developers’ context such as development language, technology framework, goal of the project, project complexity and developer’s domain expertise. They also impose additional cognitive burden on users in switching between different interfaces and clicking through to find the relevant code. Hence, they are not used by software developers. In this paper, we discuss how software engineers interact with information and general-purpose information retrieval systems (e.g. Google, Yahoo!) and investigate to what extent domain-specific search and recommendation utilities can be developed in order to support their work-related activities. In order to investigate this, we conducted a user study and found that software engineers followed many identifiable and repeatable work tasks and behaviours. These behaviours can be used to develop implicit relevance feedback-based systems based on the observed retention actions. Moreover, we discuss the implications for the development of task-specific search and collaborative recommendation utilities embedded with the Google standard search engine and Microsoft IntelliSense for retrieval and re-engineering of code. Based on implicit relevance feedback, we have implemented a prototype of the proposed collaborative recommendation system, which was evaluated in a controlled environment simulating the real-world situation of professional software engineers. The evaluation has achieved promising initial results on the precision and recall performance of the system

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    E-marketing strategy for businesses

    No full text

    Task-specific information retrieval systems for software engineers

    Get PDF
    AbstractThis paper discusses the development of task-specific information retrieval systems for software engineers. We discuss how software engineers interact with information and information retrieval systems and investigate to what extent a domain-specific search and recommendation system can be developed in order to support their work related activities. We have conducted a user study which is based on the “Cognitive Research Framework” to identify the relation between the information objects used during the code development (code snippets and search queries), the tasks users engage in and the associated use of search interfaces. Based on our user studies, a questionnaire and an automated observation of user interactions with the browser and software development environment, we identify that software engineers engage in a finite number of work related tasks and they also develop a finite number of “work practices”/“archetypes of behaviour”. Secondly we identify a group of domain specific behaviours that can successfully be used as a source of strong implicit relevance feedback. Based on our results, we design a snippet recommendation interface, and a code related recommendation interface which are embedded within the standard search engine
    corecore